合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 基于表面張力測試儀研究表面活性劑促進浮選精煤脫水的機理(二)
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(二)
> 泡沫的微觀結構及演變動力學
> 動態測量純凈水和硅油、純凈水和乙酸乙酯液體間界面張力
> 液體界面的表面張力和界面張力的測量方法
> 基于表面張力測試儀研究表面活性劑促進浮選精煤脫水的機理(三)
> GA、WPI和T80復合乳液體系的脂肪消化動力學曲線、界面張力變化(四)
> DHSO、AGE、TMHC構建陽離子有機硅表面活性劑DAT防水鎖性能(一)
> 10種常用表面活性劑水溶液的表面張力測定、泡沫的產生和測試(三)
> SRA減縮劑濃度對溶液表面張力、砂漿凝結時間、水泥水化的影響(二)
推薦新聞Info
-
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(一)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(三)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(二)
> 界面張力為22mN/m的柴油-水分離濾紙振動特性研究(三)
> 界面張力為22mN/m的柴油-水分離濾紙振動特性研究(二)
> 界面張力為22mN/m的柴油-水分離濾紙振動特性研究(一)
> 超低界面張力環保型高溫高鹽油藏的驅油表面活性劑配方比例及制備(二)
> 超低界面張力環保型高溫高鹽油藏的驅油表面活性劑配方比例及制備(一)
> 表面張力和接觸角的關系|寶玉石接觸角的測量結果和表面張力計算方法(三)
> 表面張力和接觸角的關系|寶玉石接觸角的測量結果和表面張力計算方法(二)
微流控器件結構對水/水微囊形成過程、界面張力的影響規律(二)
來源: 瀏覽 1073 次 發布時間:2025-02-28
1.2實驗過程
1.2.1同軸玻璃管微流控器件的制備
通過拉伸儀將內徑0.55 mm、外徑0.96 mm的圓柱形玻璃管和內徑1.00 mm、外徑1.40 mm的圓柱形玻璃管一端拉伸成錐狀,并利用砂紙將錐狀管口分別打磨至300和600μm.管口尺寸通過體顯微鏡進行精確測量。然后將外徑0.96 mm的玻璃管(內管)插入內徑1.00 mm的玻璃管(外管),分別制備內管管口內縮300μm、內/外管管口平齊、內管管口伸出300μm、內管管口內縮300μm外管管口不拉伸的同軸微流控器件,最后通過AB膠環氧樹脂固定。
1.2.2微流控器件制備水/水微囊
內/外相各成分含量均為質量分數:內相為0.2%黃原膠(增稠劑、穩定劑)、0.1%透明質酸鈉(保濕劑)、2%普魯蘭多糖(抗氧化劑)、5%甘油(保濕劑)的水溶液(以下簡稱黃原膠水溶液),由內管注入微流控器件;外相為1%海藻酸鈉(包材,可被鈣離子交聯形成穩定囊壁)、0.05%十二烷基硫酸鈉(表面活性劑)的水溶液,由外管注入微流控器件。內相在外相的剪切下形成液滴,同時外相在重力作用下脫離管口生成水包水的水/水微囊,并進一步通過接收池(質量分數為5%氯化鈣水溶液)中的鈣離子交聯海藻酸鈉水凝膠網絡,形成穩定的核殼結構。為了便于觀察水/水微囊的特征,采用黃色染色劑對內相進行染色。通過系統改變內相流速和外相流速,研究微流控器件結構對水/水微囊成型的影響,最終確定水/水微囊的制備相圖。
1.2.3流速對水/水微囊制備的影響
內管管口內縮300μm的同軸微流控器件制備水/水微囊具有較好的穩定性,若無特別說明,后續均采用該種設計。保持外相流速不變,研究內相流速對水/水微囊直徑和壁厚的影響。然后保持內相流速不變,研究外相流速對水/水微囊直徑和壁厚的影響。水/水微囊的直徑和壁厚通過隨機選取100顆微囊進行測量計算得到。內相流速為40 mL/h,外相流速為20 mL/h,制備得到的水/水微囊具有較薄的壁厚,若無特別說明,后續均采用該內相/外相流速。
1.2.4水/水微囊形成過程的數值模擬
數值模擬采用SolidWorks軟件建立幾何模型,使用ANSYS Workbench完成網格劃分和模擬過程。模擬器件參數與實驗器件參數保持一致,即內管外徑0.96μm、內徑0.55 mm、管口300μm,外管外徑1.40 mm、內徑1.00 mm、管口600μm,內管管口內縮300μm.由于同軸微流控器件通道結構具有軸對稱性,將模型簡化為二維模型。模型總體尺寸為20 mm×5.4 mm,包括上方微通道結構和下方20 mm長的空氣域。微通道結構和內外相采用非結構化四邊形網格劃分。幾何模型分別設置20,25,30,35,40和45μm等6種網格尺寸對模型進行網格無關性檢驗,最后選取網格尺寸為30μm,對應微囊直徑為2.756 mm.內相和外相進口為速度型入口,出口為壓力型出口,壁面為靜止無滑移的疏水表面。初始化后,內相充滿內通道,外相充滿外通道。流動模型設置為層流模型,瞬態求解過程中的壓力速度耦合采用SIMPLE算法,殘差收斂精度為10?5,時間步長為10?4 s.數值模擬研究兩相流速、界面張力及兩相黏度對水/水微囊直徑和壁厚的影響時,模擬采用的溫度為25℃,操作壓力為0 Pa,外相/空氣界面張力為30 mN/m,內相/外相界面張力為0.5 mN/m,內相0.2%黃原膠水溶液密度為1200 kg/m3,黏度為0.48 Pa·s,外相1.0%海藻酸鈉水溶液密度為1135 kg/m3,黏度為0.30 Pa·s,空氣密度為1.225 kg/m3,黏度為1.79×10?5 Pa·s.
1.2.5水/水微囊的pH響應和可控釋放
分別用HCl溶液和檸檬酸鈉調節溶液pH為1.0或8.0,靜置觀察水/水微囊在酸性或堿性溶液中隨時間的變化。
1.2.6平行放大微流控器件的設計和水/水微囊的高通量制備
首先通過微通道流動阻力分析,設計平行放大10通道微流控器件,微流控器件內相主管道直徑4.0 mm,內相分管道直徑0.5 mm,外相主管道直徑3.5 mm,外相分管道直徑1.2 mm.然后通過三維建模軟件SolidWorks建立微流控器件模型。最后通過光固化3D打印機直接打印微流控器件。





